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The paper presents the basic concepts of a system approach to thermal processes and heat-exchanging 

apparatuses. The principle of groups that is applied to the analysis of thermal systems and the search for 

systemic, integrative properties is considered. Integral and local thermal and "mechanicaF resistances are 

one of the forms of the groups. Dimensionless complexes of similarity theory are shown to be one of the 

forms of the groups at whose critical values integrative properties are manifested. 

A system approach is a broadly scientific, methodological, and philosophical concept that consists in 

studying any objects (material and ideal) as systems. The definition of the concept "system" is the concern of the 

works of many authors. A review of their investigations is made, for example, in [1 1. We will call a system any 

object consisting of subsystems and possessing the properties of interaction and emergence. In our case of 

consideration of thermal systems these two properties are most interesting, since only their presence allows one to 

open up the new and make discoveries. Interaction is the presence of links and correlations between subsystems 

(SS) that are represented by any properties, qualities, specific features, parts, etc. of the object-system (S) under 

investigation. Emergence is the ability to produce systemic, integrative properties (IP) that are inherent in the 

whole, i.e., in the system, rather than in its individual parts, i.e., SS, beyond the links, beyond the structure. The 

latter is also one of the subsystems. The concept "system" is inseparably associated with the concepts of integrity 

and uniqueness of the initial system and multiplicity of its models, hierarchy, nonadditivity, equivalence, integral 

and local, continuous and discrete, etc. 
The models of an initial physical system are represented by its thermal scheme, i.e., a thermal model and 

its mathematical models, since some of the subsystems of the initial system are not taken into account in 

constructing thermal schemes and their mathematical models (MM). The initial system is unique, since rejection, 

neglect, or addition of any of its properties, i.e., SS, can alter (more often decrease and more rarely increase) the 

quality and quantity of the possible integrative properties. Thus, the principle of uniqueness of systems and the 

principle of simulation of physical objects are in dialectical contradiction, which can be overcome by the principle 

of groups. The latter consists in the following: it is not necessary that all the subsystems produce integrative 

properties at the same place and at a certain time; the integrative properties occur at certain (they are frequently 

called "critical") numerical values of the SS groups. Examples of such groups are the critical numbers Reef, Racr, 

M, and Pr known from the theory of motion and heat transfer, stability criteria, and grid numbers in computational 

hydroaeromechanics and thermal physics [2-4 ]. The dimensionless integral complexes of the theory of similarity 

and dimensionality [5-t01 represent only some of the dimensionless and dimensional groups of subsystems that 

serve as criteria of integrativity (CI) at certain values of them. A great number of forms of the criteria, numbers, 

and complexes of similarity theory are described in detail in [10 l, which, moreover, contains very interesting and 

enlightening, from the methodological viewpoint, information on scientists in whose honor numbers, criteria, 

complexes, and groups carrying generalized information about physical processes (systems) were, are being, and 

will be named. 
The integrative properties of thermal systems depend not only on the complexes of similarity theory, but 

also on the critical values of other dimensional and dimensionless groups. Below we will speak about the ways of 
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finding the forms and values of the dimensionless groups. The method of self-similar variables, procedures for 

constructing the forms of local and integral groups by means of integral transformations, and well-known analytical 

solutions of problems (mathematical models of systems) of motion and heat transfer are described in [5, ! 1-18 I. 

Let us consider two problems. 
1. The problem of "pure" heat conduction makes it possible to obtain integral and local values of similarity 

criteria, thermal resistances, and local criteria, i.e., grid numbers. 

2. The problem of motion and heat transfer with free convection in a large volume makes it possible to 

obtain integral and local values of groups and "mechanical" resistances. After discretization of continuous media, 

from thermal and "mechanical" resistances we can obtain analogs of integral complexes, i.e., grid numbers [4 l, 

local groups of subsystems for elementary (controlled according to 119 1) volumes [20-22 l. In [231 it is shown that 

similarity criteria must depend on directions. 

Let a mathematical model (MM), which in our case is the thermal system under investigation, be called a 

"problem." To construct a mathematical model, we must know causal relations and must employ conservation laws, 

equations of state, equations of the stressed state, and all the uniqueness equations that connect the system (in our 

case the MM) with the outer medium. We consider the thermoaerohydrodynamics problems proceeding from a 

phenomenological approach. 

The heat conduction equation in differential form is 

3 OT 
+ i:~=l UiCvTx, + qv = 0 .  ( I)  

The boundary conditions have the form 

of the I kind Tsur = fl (xi, r ) ,  (2) 

of the II kind - 2 0 T / O n l s u r  = qsur (xi, r, 73 , (3) 

of the III kind - ) tOT/On [sur = Ctsur (Treed - Tsur) , (4) 

of the IV kind Tsurl = Tsur2 + ATcont ; -210T/On[su r l  = - ) t 2 O T / O n  [sur2 + qcont, (5) 

T (x i, O) = [2 (xi) , x i - x l ,  x2, x 3 .  (6) 

From MM (1)-(6) we derive the following integral groups, numbers, and integral similarity criteria: Bi =ali  

Nu = CqiqL/21i q, Fo = a r / L  2, Pe = u L / a ,  Ki = q s u r L / ( 2 A 7 3 ,  Po = q v L 2 / ( ) t A 7 3  . 

In deriving the criteria, we usually assume all the thermophysical characteristics to be constant,  and we 

assign rather indeterminate L for bodies of complex form, constant scales, and constant values of ,1, c v, u, a ,  

qsur '  qv' qva = Crv(Tmed -- T ) ,  i.e., similarity theory, is constructed on the linearization of nonlinear quantities and 

the homogenization of variable quantities entering into the uniqueness conditions. Moreover, for bodies of complex 

form the assignment of determining dimensions is rather arbitrary. Constant scales in are also selected arbitrarily 

in each particular case. 

Let us consider algebraic equations (AE) for elementary volumes AV whose dimensions are prescribed, 

because a grid region is prescribed by calculators. Thus the transition from a system with distributed parameters 

(SDP) to a system with lumped parameters (SLP) is made. 

In heat engineering all the quantities entering into the conditions of uniqueness and depending on T are called 
nonlinearities. 
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We will write Eq. (1) in an "energy" balance form suitable for both internal elementary volumes and those 

lying near the surface (in essence, this representation is equivalent to including boundary conditions in algebraic 

equations): 

Qa + O~ + Q. + Q~ ~ur + ~ v  + Q-q sur + ~ v  = O. (7) 

This form can be used to derive integral similarity criteria [6 ], wherea:; we use it for deriving local complexes- 

groups. For a node of a grid, for elementary volumes the algebraic equation (the equation of elementary balances 

[201) will have the following form if we assume that Q = A T / R  or Q = A. AT: 

Ti,n - To,n T o , n - I  - T o m  Tmed,n - Tsur n - -  + + " 
i= 1 R2i  Rr  R a  

+ 

3 T],n _ TO m 
+ X ,./~uj + qsur,n A S  + qv,  n A V  = 0 ,  

i=1 
(8) 

where n = 0, 1 . . . . .  6 are the numbers of the adjacent nodes; 0 is the central node. Equation (8) can be written for 

both the implicit and explicit scheme of the grid method (the method of finite differences). In approximating a 

differential equation (DE) it was assumed that the heat fluxes were proportional to the temperature gradients and 

drops, i.e., a linear approximation of functions of T was actually carried out. The values of the thermal resistances 

R = 1 / A  are coefficients of the algebraic equations. These coefficients are groups of subsystems entering into the 

uniqueness conditions of the mathematical model. For volumetric problems m = 6; j = 3 for convective terms; n is 

the number  of the time step. In the general case h I ~ h 2 ~ ... ~ h 6, A S x y  ~ A S x z  ~ ASyz .  For a cube AV = h 3, AS 

= h2; h = 2l. Equation (8) can be written for the following schemes of disposition of the nodes: "nodes in the interior" 

or "nodes at the corners" [21, 22 ]. Systems of algebraic equations can be solved on any type of computer (analog, 

digital, hybrid,  i.e., AC, DC, and HC) [141. 

The thermal resistances R or conductivities A are coefficients of the algebraic equations, and using them 

it is possible to judge approximately quantitatively and qualitatively the quality of the solution (stability [191 and 

variability [ 14 ] for explicit and implicit schemes). The law of coefficients [ 19 ] yields the conditions of the variability 

and stability that give the critical values of the groups, i.e., the criteria of integrativity. 

For a rectangular coordinate system the l o c a l  thermal resistances-groups have the form 

hxl  hx2 
; = 

R2x I = ) t x l A S y  z R2x2 2 x 2 A S y z  ; ... ; 

hz2 c$r hxi 
R2z 2 = ) t z2ASxy  ' R r c v A V ,  Ru-x U x l C v A V  . . . . .  ; 

hz l  1 

Ru3 = U z c v A V '  R a  sur a s u r A S  ; 

1 
R a v  = a v A V  ; hl  = hx  I ; h2 = hx  2 ; ... ; h6 = hz 2 . (9) 

For uniform grids (hxl  = hx2 = ... = hz2 = h) expressions (9) are simplified: 

h 6r h 1 1 
R,~ = - - "  R r = ; R u = " R a s u r  = ; R a g  - 

,~h 2 ' Cv h3 UCv h3 , ,~u/~ 2 avh 3 
(lO) 

The parameters of the grids, i.e., the thermal resistances-groups, differ by a constant value depending on 

whether the procedure of calculation of the AE coefficients is "nodes at the corners" or "nodes in the interior" [21, 
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22 ]. Note that asurAS = avAV,  i.e., Ra sur = Ray, because differential equations are written for points, W/m 3, 

whereas algebraic equations are written for elementary volumes, W; qsurAS = qgA V. 

It should be emphasized that local thermal resistances (9), i.e., the AE coefficients-groups for nonuniform 

grids and variable and nonlinear conditions of uniqueness are not identical: they depend on coordinates, time, and 

temperature. The integral complexes, numbers, and similarity criteria are likewise groups that consist of integral 

thermal resistances, but they contain not local, but rather integral values of all the subsystems of the thermal 

system. For example, Bi = aL/) t  = R A L z / R a z ,  where R,t z and Ray ,  taken in one direction, refer to the same area 

S = 1 normal to the direction of the heat fluxes Qa and Q~, whereas the grid number  ABi = axhx/)t  x consists of the 

local values R~. loc = hx/(2xASyz) and R). Ioc = 1/(axASyz). The local values Ctx, 2x, ASrz, and hx should be selected 
taking account of the directions of the heat fluxes. 

The  integral and local numbers  consist of two "types" of quantities: 1) those entering into just the 

uniqueness conditions and 2) those entering into the uniqueness conditions and the unknown functions T and AT 

(the energy terms in Eq. (8)). The second quantities are the generalized variables, i.e., the desired functions. The 

first ones are the generalized arguments. One of the ways of finding the groups is to decrease the number of 

arguments by reducing them to groups (methods of similarity theory, the method of self-similar variables). 

Let us consider the relationships of local thermal resistances, i.e., not simply the relationships between the 

elementary subsystems (SS), but the relationships between the SS groups entering into the thermal resistances. 

We may speak of the hierarchy of groups beginning with the elementary subsystems, i.e., the groups of the zero 

order 0., c, p,  etc.), and ending with the fullest groups represented by explicit mathematical models, i.e., the 

solutions of the problems containing all (!) the elementary subsystems in quite definite relationships. These 

relationships (relations, interrelations, interdependences) generate the desired integrative properties (IP). The 

integrative properties are generated by the relationships between the quantities entering into the uniqueness 

conditions and the relationships between the "types of energies," and some of these must be determined after 

solution, for example, Q)~, Qr, Qu, and Q-.a. 

The numerical solution depends on the values of the coefficients of algebraic equations, and the behavior 

of the solution can already be foreseen from the relationships between these coefficients, i.e., the thermal 

resistances. This is the manner of production of "grid numbers," stability criteria for implicit finite-difference 

schemes, variability criteria for implicit schemes, and the law of coefficients [19 ], which reflects the conservation 

laws for grid nodes. 

The integral criteria of the type Bi = R~z/Raz  are constructed proceeding from certain directions of heat 

fluxes in one-dimensional problems. At the same time, if we want to speak of heat fluxes Q in different directions, 

we must take the corresponding lengths, areas,/1, cz, etc. For example, for rectangular fins with 6 << H, to obtain 

the integral Bi, one cannot take R)~ z = H/(2S) ,  where H is the fin height, S is the cross section of the fin, and 

R a l a t Y  " = 1/(CtlarHH), where H is the perimeter of the fin (H = 2(6 + B)), B is the fin width, and RitZH reflects 

the rate of heat flux along (!) the fin and R a l a !  Z across (!) the fin. One cannot construct the integral Bi proceeding 

from R;t and R a in different (!) directions. But the ratio R;~z /R  a l a t  y is an important complex that determines the 

integrative properties of the fin. The group 

mH = ~/ ct FI H / (,TtS / H) = ~ R c~z / R ~zH (11) 

was not obtained in the same manner as the integral criteria of the type Bi, Fo, etc. in similarity theory. 16-101. 

This group is the result of consideration of the analytical solution I24 I. Thus, analytical solutions have one other 

advantage over numerical solutions: they carry information about the composition of groups on whose values the 

integrative properties of thermal systems depend. 

A further example of such a group is the solution [24 I 

T - Tme d (12) 

Tp - Tree d ch rnH 
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where Tf is the t empera ture  of the fin base. 

One of the groups obta ined  for the thermal system "fin" is the well-known coefficient of f inning efficiency 

E: 

E - - -  
th m H  H 2 (th v r RaH/RaE ) 

Vmm ~ R~tt/ Ray- 

As is seen,  the integral  thermal  resis tances RaZ H and Ray - form the basis for this group. But the form E can be 

ob ta ined  only by car ry ing  out an analyt ica l  investigation that in our case is one of the opera t ions  of sys tem analys is .  

Thus,  not only does the m H  group reflect the internal relat ions of our thermal  system,  but also the group (12) and 

the group E. Groups  (11), (12), and  E were obtained for the simplest  thermal systems,  but they suggested still 

ano ther  way for obta in ing the quali tative composition (form) of the group. 

Analyt ica l  solutions reflect in ternal  in terre la t ions  and in te rdependences  ( interaction and emergences)  that 

represent  the basic specific feature of systems.  

Let us cons ider  the re la t ionships  between the local thermal  resistances:  

R T 6r.,[AS 

R~ CvA Vh 
- -  - A F o .  ( 1 3 )  

Only for the case AS = h 2 and A V =  h 3 do we have 

AFo = , ~ r  _ a3r  (14) 
cvh 2 h 2 �9 

The  grid number  def ined by Eq. (14) gives the value of the s tabi l i ty  criterion for explicit  schemes and the 

cri ter ion of var iabi l i ty  for implicit schemes of the f ini te-difference method (1/2;  1/4; 1/6) .  These  numbers  were 

found for problems with boundary  condit ions of the first kind,  i.e., for inner  grid nodes. The  procedure  for deriving 

the Neumann  s tabi l i ty  condit ion [4, 191 and analogous condit ions of s tabil i ty and var iabi l i ty  is e lementary .  From 

the conservat ion condit ions it follows that 

AT 1 AT 2 AT r 
- -  + - -  + = 0 (one-d imens iona l  problem) (15) 
R21 R.~2 ~ 

Assuming that AT 1 = AT 2 = AT~ = AT, we obtain the condit ion necessary for an e lementa ry  volume (cube): 

2 1 a ~  1 
- -  = - - ;  - ( 1 6 )  

R~ R T h 2 2 " 

In a s imi lar  manner  we can obtain other  values of this group, i.e., of the integrat ivi ty cr i ter ion for thermal  

sys tems (sys tems with lumped parameters ) ,  for two- or th ree-d imens iona l  grid regions, for nodes on surfaces with 

prescr ibed values a ,  qsur, qv, u, etc. For example,  for movable sources 

R~ h u c ~  V 

R u - ~ASh 
- A P e .  (17) 

The  Peclet  grid number  for a cube will be APe = uh /a .  

Similar ly  we obtain R r / R  u = uOT/h = ASh (the local Strouhal  number  [9 ]). It is clear  that  in the equation 

of motion and heat  t ransfer  the term with the heat capacity clOT~Or and the convective term were considered.  The  

equation 

Q~ + Q. + Q,. = O, 

8 0 1  



yields a relation that takes account of three heat fluxes, and the quantity 6r will depend on cv,  u, A V  (i.e., h), and 

a [15-17 l- The ratio R u / R  a = a / ( c v u )  -- ASt, which is the Stanton grid number. For crossflow heat exchanging 

apparatuses-recuperators such numbers, groups, criteria of variability are obtained in I15-17 I. These relations 

explain the physical meaning of the law of Scarborough coefficients presented in 119 1. 

The local groups 

qsur h qv h2 (18) 
AKi = A~[-A-T~' APo ~.ATa 

can be obtained by prescribing AT/t. The quantities reciprocal to these dimensionless numbers  are used as 

dimensionless temperatures: 

1 (T  - Thorn) ). (T  - Tnom) J. 1 @ - _ _ -  ; |  - _ _  (19) 
AKi qsur h qv h2 APo 

The integral dimensionless temperatures are 

1 1 
O = ~ ' ,  O = --po, where AT~ = T -  Tnom, (20) 

Tno m is the prescribed scale temperature. 

The criterion of stability or variability must be determined not from Eq. (16), but from an equation that 

takes account of heat transfer with the wall. At prescribed values of a the intervals 6r and h must be determined 

from the algebraic equation for a node, i.e., from 

AT2i AT r A T  u ATmed 
- - +  + + - - - 0  (21 

i=l R2i ~ ~ u  Ra ' 

where m depends on the position of the node with respect to the surface. 

Thus, the choice of 6r and h is determined by the velocity u and a when a simplified conjugate problem Is 

solved 115-171. 

As is seen, the criteria of integrativity are obtained from conservation laws on the condition of equality of 

the gradients and the drops AT. Actually, in each particular case AT). ~ ATr ~ ATu ~ AT,~, and therefore system 

phenomena where the quantity 6r can be prescribed larger for explicit schemes than according to condition (16) 

seem to be "paradoxes." For implicit schemes there are cases wherc vibrations should must occur at 6rcr, but they 

are absent. This is explained by the fact that the quantities 6rcr are derived assuming equality of A T  i in Qi (see 
Eq. (8)). 

Now we will consider a more complex thermal system, namely, a mathematical model of motion and 

convective heat transfer in a large volume: 

~Ux _~2  0 (22)  
,L~ + Oy = ' 

Ou r Ou x 02Ux 
u x - +  u y - - = v - - + / 3 g ( T -  r ~ )  (23) 

Ox 03' Oy 2 

0T OT 02T 
u , : - -  + u v -  = a - -  (24)  

~.~ " 0y 0y 2 '  
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y = 0  u x = O ,  u y = O ,  T =  Tw; (25") 

y=  ~ u x = O ,  T =  T| (26) 

All the simplifications and assumptions adopted in the formulation of the thermal and mathematical model 

are described in detail in the literature; however, even such a simplified system has a sufficient number  of 

subsystems and can form a basis for deriving the forms of groups that are called the "mechanical" resistances." 

Now, we will write the system of differential equations (22)-(26) in the form of algebraic equations. In this case 

the mass conservation (continuity) equation does not give us grid numbers. Equation of motion (23) can be written 

in the form of a "balance" equation for the forces A: 

A ~  + Auy = A~y 1 + Avy 2 + Aft. (27) 

If we assume that the forces (as above the heat fluxes) are approximated in the form of the expression A 
= A u / R  mech, then from Eq. (27) we obtain such an algebraic equation for a node (for the volume A 1,3: 

AUx AUx AUx| AUx2 (28) 
_mec~ + _mec~ - _mech + ~ + flgATAV = O. 
l{uxx l{u.xy Rvyl 1r 

In the thermodynamics of irreversible processes the following form of representation for the generalized 

fluxes I i and forces X K is used: 1 i = Y LikX K. Thus, R m e c h  = 1/Lik ,  i.e., 1 /R  m e c h  a r e  the kinetic coefficients, Au are 
K 

the generalized forces, and A are the fluxes. Formally and actually, Eq. (28) is the result of linearization of the 

function u. 

The "mechanical" resistances R mech are coefficients at the gradients Au. In this case directions play an even 

greater part than in searching for Rth: 

Rmech hx . _ m e c h  hy . _ m e c h  hyl . 

u.xx = u x A V '  Ru-xY = u y A V '  Rvy I = v A S x z '  

Rmech by2 . 
vy2  = VASx z , 

A~ = flgaTa V. 

(29) 

Expressions (29) for the groups called "mechanical" resistances are derived similarly to expressions for 

thermal resistances. Since in the convective terms the unknown quantities T and u enter into R or R mech, the 

differential and algebraic equations are highly nonlinear. 

If u is assigned in the energy equation, then it is an unknown function in the motion equation. Therefore,  

in numerical solutions of motion equations it is necessary to take into account nonlinearities according to an iterative 

or noniterative scheme of allowance for nonlinearities [14 ]. 

In the expression for the lifting force Af the drop AT is prescribed from a solution of heat conduction 

equation (24). In this way a solution is obtained for the joint problem of motion and heat transfer, in whose 

mathematical model there are essential nonlinearities, although here the quantities v and a are taken to be constant 

and the equations are solved in the Boussinesq approximation, i.e., only p in fl and the force Af (a function of 

temperature) are assumed to be temperature-dependent.  

For the nonstationary problem nonstationary terms with OT/Oz and du/dr appear in Eqs. (23) and (24), 

i.e., a total derivative with dT/dr  and du/dT appears in the differential equation. 

* Hydraulic resistances is the term commonly applied to forces, rather than to the coefficients at Au. 
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Let us consider not only the groups R mech, but also the relationships between these groups. We recall once 

again that comparatively simple expressions (without "account" for directions (!)) are obtained for the simplest 

form of the elementary (control) volume AV = h 3, AS = h 2, i.e., hxl = hx2 = ... = hz2 = h and A S x z  = A S y z  = A S x y  "= 

AS = h 2, AT = T i - T ~  (i is the number  of the node): 

Rmech vyl h u x h  3 

Rmech uxx vh2h 
_ ARex ' (30) 

Rmech h u ? 3  
vy2 = = ARey. 

Ruxy vh2h 
(31) 

Such a group can be considered in Eq. (28): 

A _mech f ig  ( T  i - T . )  A V h  f ig ( T  i - T . )  h 2 
~lr = v A S  = v = k G r ' .  (32) 

As is seen, the group is "generated" by multiplying R mech by the AE coefficient A/~. 

The  analyt ical  solution presented,  for example, in [251 gives more interest ing information on the 

composition of the groups (i.e., on interrelations of subsystems i n s ide  the system-process under  investigation). If 

we introduce the new variables 

T - T .  flgx 3 (T w - T| 
O = - - ;  G r x =  2 ' 

T w - T~ v 

P r = - ;  z = -  ; ~ , = 4 v  ~o(z); 
a X 

: g  (T w - T~)]  I /4  
VX 4VX I / 2 

4V2 

= - I / 4  " f l g ( T w -  T~o)ll/4 
Vy v x  - -  (z~o' - 3,p) (33) 

4v2 J 

then the mathematical model in partial derivatives transforms into an ordinary differential equation of the third 

order for ~p and of the second order for O: 

: ' "  + 3~,qo' - 2 @)2  + 0 = O, (34) 

O +3Pr~oO = 0 .  

In this case boundary conditions (25) and (26) will take the form 

z = 0  ~o=~o = 0 ,  O =  1, 

(35) 

(36) 

z = o o  ~o = 0 ,  |  (37) 
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As we can see, this conversion reduces sharply the number of arguments, with Pr remaining the most 

important of these. This form of the groups indicates interdependences and relations i n s i d e  the system. It is 

impossible to obtain the form of groups (33) by using methods of similarity theory [5-10 ]. This is one of the merits 

of analytical methods that is usually not noted by their experts. 

The investigation of our thermal system is conducted in groups, i.e., the functions ~o'(z) and O(z) are 

constructed. Only the two arguments z and Pr remain. One other fact is of interest: a = 2/(cp) is not just a 

characteristic group; it is part of the integrative criterion Pr = v / a .  At certain values of Pr (see [251, Fig. 3 - 4 6 )  w e  

obtain systemic (l) integrative effect, namely, a maximum of the function ,/,' = V x [ X / ( 2 v  ) IGrx L'2. This effect cannot 

be obtained without system analysis, i.e., without a solution of the problem stated and without a complex multilevel 

computational experiment. It should be emphasized that after all the transformations the thermal system, i.e., MM 

(34)-(37), was ultimately investigated numerically (!). 

In the case of a nonstationary problem, we obtain a grid number A F o  mech that involves R mech = t~T/AV: 

_ m e c h  th 

AFo mech - KT -- ~ r v / h  2 Pr - Fo th _ a APr _ __R~ al~: 
, 1 Rmech FomeCh _mech 

v R r r i o  c 

(38) 

The complexing of the groups is carried out by the method of self-similar variables described in [12, 13 l, 

which amounts to a reduction in the number of arguments to a minimum. The complexes remaining after 

transformations are the desired groups of subsystems. 

The phenomenological theory of heat transfer makes use of similarity criteria, for example, Recr, Racr, and 

many others. We will consider the criterion Re, which depends on the velocity u, the kinetic viscosity v, and the 

determining dimension L. The integral number Re is interpreted as a measure of the relationship between inertia 

forces and forces of molecular friction. The local number ARe represents the relationship between the mechanical 

resistances, i.e., the coefficients of the AE in the terms of the equations associated with pulse diffusion R~ ech and 

with the convective term R mech (see expressions (29)). The integral number Recr  I is equal to about 2300 for flow --ILX 

in tubes; Recr 2 = 5" 105 for flow around a plate; Recr 3 = 100 for isothermal flow around a sphere; Recr 4 = 500 for 

a cylinder in a transverse flow: 

Recr I = UD.v , Recr 2 = __~; Recr3(4)_ UDv (39) 

As we can see, in all cases U is the inlet velocity, and v is a coefficient depending on the kind of fluid. The 

determining dimensions D and x vary. It is evident that Recr should involve all the geometric factors (form-factors); 

then the criterion of stability will have the form K = f ( U ,  v, ay), where the ay-type coefficients in each specific 

problem must reflect all the geometric factors, rather than one dimension x or D; the coefficients a /must  reflect 

all the interrelations and correlations between the flow and the outer and inner medium (a tube, an infinite volume 

- a ball, cylinder, sphere, etc.). A group is not simply a set of the subsystems U, L, and v, but a set of all the 

subsystems that takes into account all the interrelations of the given specific system. In many publications the 

authors subject their results to a processing such that not simply is Re an argument, but also Re multiplied by 

coefficients that reflect the influence of a c o m p l e x  form of the object under investigation. 

Different complexes of the type of Boltzmann substitution and integral transformations are forms of groups. 

This specific feature of integral transformations was noted by the authors of [5, 11 I. Monograph [261 is devoted, 

in essence, to the search for forms of groups that reflect the structure of thermal systems, although the author 

himself does not write about interaction and emergence as basic properties of the "heat-transfer" systems. 

N O T A T I O N  

a = ; t / ( c p ) ,  thermal diffusivity; c, specific mass heat capacity; c v = cp, specific volumetric heat capacity; g, 

acceleration of gravity; h, space interval, distance between nodes of a grid region; l, distance from a node at the 

center of AV to the surface of AV; L, determining dimension; n, normal; Q, heat flux (power); q, specific density 
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(power) of a heat flux; R, thermal resistance; S, area; T, temperature; u, velocity; V, volume; x, y, z, coordinates; 

x I = x, x 2 = y, x 3 = z; Bi, Biot number; Fo, Fourier number; Gr, Grashof number; Ki, Kirpichev number; M, Mach 

number; Nu, Nusselt number; Pe, Peclet number; Po, Pomerantsev number; Pr, Prandtl number; Ra, Rayleigh 
number; Re, Reynolds number; Sh, Strouhal number; a, coefficient of heat transfer;/~, volumetric expansion of a 
liquid; AS, AV, elementary area, volume; AT, temperature difference in space, time; dir, time interval; ~, dynamic 

viscosity; A, thermal conductivity; ,,1, heat conduction; v, kinematic viscosity; p, density; r, time. Subscripts and 
superscripts: lat, lateral; liq, liquid; con, contact; cr, critical; loc, local; mech, mechanical; 0, characteristic; sur, 

surface; nom, nominal; med, medium; w, wall; th, thermal; V, volumetric; Y., total. Abbreviations: AE, DE, ODE, 

algebraic, differential, and ordinary differential equation; DEPD, differential equation in partial derivatives; IP, 

integrative properly; MM, mathematical model; SS, subsystem; S, system. 
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